top of page
Chemical Engineering Kinetics (155:341)
Fall 2015, Spring 2016, 2017, 2018, 2019, 2020
Fundamental theories of kinetics. Ideal reactor analysis; single reactions, parallel and series reactions. Consideration of real reactors and reactor design. Principles of heterogeneous catalysis, combined mass transfer/kinetic phenomena, and approaches to catalytic reactor design using computer methods.
Advanced Transport Phenomena (155:501)
Fall 2016, 2017, 2018, 2019
Momentum transport processes in laminar- and turbulent-flow systems. Development and application of steady and unsteady boundary-layer processes, including growth, similitude principles, and separation. Potential flow theory coupled with viscous dissipation at boundaries. Momentum transport in fixed- and fluid-bed exchangers and reactors. Prerequisite: Undergraduate transport phenomena.
South China University of Technology (SCUT) Student Summer Program at Rutgers
Summer 2017, 2018
Revolutionizing reaction engineering and catalysis through in-situ and Operando spectroscopy
Short course on coupling the basic principles of reactor design with molecular spectroscopic techniques in order to measure accurately the kinetics of complex reactions. Efforts were placed on developing an understanding on the changes occur on active sites.
Chemical Engineering Kinetics (155:341)
Fall 2015, Spring 2016, 2017, 2018, 2019, 2020
Fundamental theories of kinetics. Ideal reactor analysis; single reactions, parallel and series reactions. Consideration of real reactors and reactor design. Principles of heterogeneous catalysis, combined mass transfer/kinetic phenomena, and approaches to catalytic reactor design using computer methods.
Advanced Transport Phenomena (155:501)
Fall 2016, 2017, 2018, 2019
Momentum transport processes in laminar- and turbulent-flow systems. Development and application of steady and unsteady boundary-layer processes, including growth, similitude principles, and separation. Potential flow theory coupled with viscous dissipation at boundaries. Momentum transport in fixed- and fluid-bed exchangers and reactors. Prerequisite: Undergraduate transport phenomena.
South China University of Technology (SCUT) Student Summer Program at Rutgers
Summer 2017, 2018
Revolutionizing reaction engineering and catalysis through in-situ and Operando spectroscopy
Short course on coupling the basic principles of reactor design with molecular spectroscopic techniques in order to measure accurately the kinetics of complex reactions. Efforts were placed on developing an understanding on the changes occur on active sites.
Chemical Engineering Kinetics (155:341)
Fall 2015, Spring 2016, 2017, 2018, 2019, 2020
Fundamental theories of kinetics. Ideal reactor analysis; single reactions, parallel and series reactions. Consideration of real reactors and reactor design. Principles of heterogeneous catalysis, combined mass transfer/kinetic phenomena, and approaches to catalytic reactor design using computer methods.
Advanced Transport Phenomena (155:501)
Fall 2016, 2017, 2018, 2019
Momentum transport processes in laminar- and turbulent-flow systems. Development and application of steady and unsteady boundary-layer processes, including growth, similitude principles, and separation. Potential flow theory coupled with viscous dissipation at boundaries. Momentum transport in fixed- and fluid-bed exchangers and reactors. Prerequisite: Undergraduate transport phenomena.
South China University of Technology (SCUT) Student Summer Program at Rutgers
Summer 2017, 2018
Revolutionizing reaction engineering and catalysis through in-situ and Operando spectroscopy
Short course on coupling the basic principles of reactor design with molecular spectroscopic techniques in order to measure accurately the kinetics of complex reactions. Efforts were placed on developing an understanding on the changes occur on active sites.
Tsilomelekis Research Group
Material Synthesis | Heterogeneous Catalysis | Operando Molecular Spectroscopy
Tsilomelekis Research Group
Material Synthesis | Heterogeneous Catalysis | Operando Molecular Spectroscopy
Undergraduate Research Opportunities
Our research lab is always looking for highly motivated undergraduate students to work closely with our graduate students. Interested applicants should send a copy of their CV and a short cover letter describing their research interests directly to George Tsilomelekis at g.tsilo@rutgers.edu
Graduate Positions
We are always looking for highly motivated graduate students with research interests in the broad fields of catalysis and spectroscopy. Interested applicants should send a copy of their CV and a cover letter directly to George Tsilomelekis at g.tsilo@rutgers.edu
Postdoctoral Research Positions
Currently, there are no Postdoctoral research opportunities.
bottom of page